Helikopterek Leírása!
helikopter olyan aerodinamikus légi jármű, amely motor segítségével forgatott szárnyakkal tudja önmagát a levegőbe emelni. Repülési magasságát és irányát nem szárnyakkal és vezérsíkokkal, hanem a forgószárnyak állásszögének változtatásával tudja szabályozni. A helikopter szó a görög helix (csavar) és pteron (szárny) szavakból keletkezett. A motor meghajtású helikoptert a szlovák származású Jan Bahyl találta fel. Az első stabil, sorozatban gyártott típust Igor Sikorsky tervezte.
A merevszárnyú gépekhez képest a helikopterek sokkal összetettebbek, drágábbak, körülményesebb a fenntartásuk és kisebb a teherbírásuk. Jelentős előnyük, hogy a helikoptert a levegőben tartó felhajtóerő megteremtéséhez a helikopternek nem kell viszonylag nagy sebességgel mozognia, mint a repülőgépeknek: a helikopter képes egy helyben függeszkedni, hátrafelé haladni, és mindenek felett függőlegesen egészen kis helyen is le- és felszállni. Pusztán a töltőállomások helye korlátozza mozgásterét.
A hagyományos, merevszárnyú repülőgépek azon az elven működnek, hogy a gép szárnyai fölött és alatt előrehaladás közben légnyomáskülönbség alakul ki, így felhajtóerő képződik. A helikopter ugyanezt a fizikai elvet használja ki, azzal a különbséggel, hogy csupán a rotorlapátokon keletkezik felhajtóerő, nem a gép szárnyain (ha egyáltalán vannak, a szárnyakon keletkező felhajtóerő elhanyagolható a rotorokon képződő erőhöz képest).
A rotor forgatásának reakciónyomatéka azonban az ellenkező irányba forgatná a helikopter törzsét, ezért egy kisebb, vízszintes tengelyű hátsó rotort használnak, ami ellensúlyozza a forgatónyomaték hatását. Ezt a légcsavart néhány modellnél beleágyazzák a farokrészbe, így kevésbé károsodhat, kisebb veszéllyel van a körülötte tartózkodókra, és alégellenállása is kedvezőbb.
Egy másik mód az ellentétes forgás kiküszöbölésére, ha két, egymás fölött, mellett, vagy mögött elhelyezett, ellentétes irányba forgó rotort használnak, mint például a Boeing CH–47 Chinooknál vagy a KamovKa–50-nél. A két egymás feletti rotorelrendezésű változatot koaxiális elrendezésnek nevezik, mivel a rotorok meghajtótengelyei koaxiálisan (egymásban) helyezkednek el. Ezt az elrendezést Nyikolaj Kamov terjesztette el az 1950-es években, és gyakorlatilag az összes Kamov helikopter ezzel az elrendezéssel készült.
Döntő fontosságú a helikopter megpördülésének ellensúlyozásához szükséges erő beállítása. A farokrotor a hajtómű teljesítményének 30%-át felemészti, és nem segít a helikopter felemelésében vagy mozgatásában. Éppen ezért a helikopter farokcsúcsát meghajlítják, hogy az nagy sebességnél a légáramlást kihasználva ellensúlyozza a forgatóhatást és több erőt hagyjon a főrotornak. Ez azonban nehézzé teheti az egy helyben lebegést szeles napokon.
Természetesen a helikopternek is kormányozhatónak kell lennie. Ezt a problémát a repülőknél viszonylag könnyen meg lehet oldani vezérsíkokkal és kormánylapokkal, amelyek a légáramlat elterelésével megváltoztatják a haladási irányt. A helikoptereknél azonban a relatíve kis sebesség miatt ez nem elégséges.
A függőleges tengely menti elfordulást a farokrotor fordulatszámának növelésével vagy csökkentésével is el lehet érni, de általában a farokrotor-lapátok állás-szögének változtatásával oldják meg. A duplafőrotoros (koaxiális) gépeknél ezt a hatást a két - egymásnak szembeforgó - főrotor eltérő sebességű forgásából adódó reakciónyomaték kihasználásával érik el. A helikopter kialakításától függetlenül a függőleges tengely körüli elfordulás vezérlése a pedálokkal történik.
A helikopter megdöntéséhez (előre, hátra) illetve az oldalirányú repüléshez, a rotorlapátok állásszögét az adott oldalon megdöntik, azaz megváltoztatják a rajta ébredő légáramlást , így az egyik oldalon nagyobb lesz a felhajtóerő, mint a másikon. Ezt az eljárást ciklikus állásszög-szabályozásnak nevezik, mivel az adott oldalon egy bizonyos szögben álló lapát a forgás következtében átérve a másik oldalra, az ott beállított szöget kell felvegye, majd forgás közben visszaérve a kiinduló oldalra ismét az itt beállított szöget veszi fel és kezdődik az egész elölről. Ebből következik, hogy minél több lapátból áll a főrotor, annál bonyolultabb mechanikai vezérlés szükséges a megfelelő működéshez. A korszerű rotorvezérlés a lapátok tehetetlenségét is figyelembe veszi, azaz úgy számítják ki az egyes lapátok szögvezérlésének az előtolását, hogy azok pont az optimális tartományban vegyék fel a beállítási pozíciójukat, ezzel is segítve a helikopter stabilitását.
A helikopter irányítására a pedálokon kívül három vezérlőrendszer szolgál. A kollektív kar (collective pitch control lever), ami az összes rotorlapát állásszögét egyszerre változtatja (az emelkedést és ereszkedést szabályozva).
A sebességvezérlő szabályozza a hajtómű fordulatszámát. Ez általában egy forgó markolat az előbb említett karon. A helikopterek rotorjait egy adott fordulatszámra tervezik, és ettől csupán néhány százalékkal szabad eltérni. Ezt a folyamatot a kisebb gépeken általában a pilótának kell szemmel tartania, de az újabb helikoptereken ezt már egy szervo-visszacsatolású automatika (governor) elvégzi a pilóta helyett.
A ciklikus vezérlő segítségével lehet a rotorlapátok beállítási szögét a forgási sík valamelyik oldalára nézve megváltoztatni és a helikoptert ezzel a vízszintes síkban mozgásba hozni. Ez a vezérlő a pilóta előtti botkormány.
A rotorlapátokon tapasztalható légáramlás haladás közben az egyik oldalon a rotor fordulatszámával plusz a helikopter repülési sebességével, a másik oldalon pedig a rotor fordulatszámával mínusz a helikopter repülési sebességével számítva alakul (szélnekforgó illetve szélbőlforgó lapátok), így a két oldalon különbözö nagyságú felhajtóerő lép fel. Ennek ellensúlyozására a rotorlapátvezérlő rendszer és/vagy a lapátok fel-le hajlását engedő mechanizmus ciklikusan szabályozza a rotorlapátok állásszögét ennek ellensúlyozására is. Ebből a sajátosságból ered a helikopterek maximális sebességhatára, mivel ha a szélbőlforgó oldalon az eredő légsebesség kritikusan lecsökken, azon az oldalon a felhajtóerő is megszűnik.
Továbbá, ha bármely szárnyon túl nagy az állásszög, ideértve a rotorlapátokat is, a szárnyat körbevevő lamináris áramlás megtörik és ezzel együtt megszűnik a felhajtóerő. Ezt az aerodinamikában átesésnek hívják. Egy helikopter esetében ez az alább felsorolt három módon fordulhat elő:
1. Ahogyan nő a helikopter sebessége, a szélnekforgó lapátok elérik a hangsebességet és lökéshullámokat okozhatnak a lapát felett, ami szuperszonikus áteséshez, vagyis a felhajtóerő eltűnéséhez vezet.
2. A szélbőlforgó lapátokon (a rotor szélbőlforgó oldalán) kisebb sebességű eredő légáramlat mérhető, ezt a vezérlőrendszer meredekebb támadási szöggel próbálja korrigálni. Ha túl alacsony az eredő légáramlat és túl meredek a támadás szöge, az átesés elkerülhetetlen.
3. Ha alacsony fordulatszámon túl nagy támadási szöget állítunk be, szintén átesés következik be.
A helikopter bár motormeghajtású jármű, motorhiba esetén képes a lapátok lendületét, valamint a biztonságos magasságból történő lefelé irányuló mozgást együttesen kihasználni. Ezt autorotációnak nevezik. Ilyenkor az alulról érkező "megfújás"-nak megfelelően a gyorsan ereszkedő helikopter lapátjait negatív szögbe állítják, és ettől a rotor a jó irányban forog tovább. Ilyenkor van pár pillanat egy megfelelő leszállóhely kinézésére, amely fölött - a kellő időben - pozitívba visszaállított rotor termel még annyi felhajtóerőt, hogy a helikopterrel le lehessen szállni.
A helikoptereket úgy tervezik, hogy még a hajtómű leállásakor is működjön a farokrotor (ezt gyakorlatilag a főrotorral direktbenkapcsolt áttétellel oldják meg), így a helikopter működő motor nélkül is irányítható marad, amíg a főrotor forgásban van.
A ciklikus vezérlőrendszer egyik további érdekessége, hogy a lapátokat a gép sajátosságainak megfelelően x fokkal a kívánt haladási irány előtt szabályozzák, amely nem összekeverendő a már említett lapát-tehetetlenségi előtolással. Ez a szabályzás azért van, mert egy forgásban lévő testet ha kibillentünk a forgási síkjából, például egy rotorlapátot, akkor az azon ébredő precessziós nyomaték erőhatása visszahat a helikopterre. Ezt giroszkopikus precessziónak is nevezik. Egy korszerű helikopter vezérlőrendszere mindenkor figyelembe veszi a rotor forgási irányát, valamint a repülés irányát és ezeknek megfelelően módosítja a ciklikus vezérlést. A feltalálóknak sok-sok évébe tellett, mire felismerték ezt a folyamatot, és sikerült áthidalniuk ezt a problémát.
A helikopter legszembetűnőbb hátránya a repülőgépekhez képest alacsonyabb végsebesség. A jelenlegi csúcsot a Westland Lynx tartja 400 km/h-val. Számos oka van annak, hogy egy helikopter miért nem repülhet olyan gyorsan, mint egy repülő.
§ Lebegés közben a rotorlapátok csúcsai a lapátok hossza által meghatározott sebességgel mozognak. Egy mozgó helikopternél azonban az előrehaladó lapátnak a levegőhöz viszonyított sebessége sokkal nagyobb, mint magáé a helikopteré és akár a hangsebességet is elérheti, ez rázkódást és lökéshullámokat kelt. Elméletileg lehetséges spirálszerűen forgó lapátokat használni, de jelenleg nincs olyan anyag, ami elég erős, könnyű és rugalmas ehhez.
§ A legtöbb rotor nem merev. Mivel az előrenyomuló lapát erősebb légáramlattal találkozik, mint a visszavonuló, egy teljesen merev lapát azon az oldalon nagyobb felhajtóerőt keltene és megdöntené a helikoptert. Éppen ezért a rotorlapátokat "csapkodásra" – elhajlásra és csavarodásra tervezték, hogy az előrenyomuló lapát felcsapódjon és kisebb támadási szöget produkáljon, ezzel kisebb felhajtóerőt okozva, mint amekkorát egy merev csinálna. Ezzel szemben a visszavonuló pengék lefelé hajlanak, így nagyobb támadási szöget írnak le és nagyobb felhajtóerőt okoznak. Nagy sebességnél a lapátokra ható erő miatt azok csapkodni kezdhetnek, ekkor a visszavonuló lapátok túl nagy szöget érnek el, majd túlhúzódnak. Néhány típusnál a fedő merev. A lapátok összetettek, melyek anélkül képesek meghajlani, hogy eltörnének. Léteznek teljesen merev lapátosak is, melyek kiváló helikoptereket alkotnak. Ezeknél a felhajtóerőt ciklusonként változtatják a helikopter sebességének megfelelően. Ezt vagy a támadás szögének változtatásával érik el, vagy pedig a hajtómű által működtetett szívóberendezéssel, mely levegőt szív be a lapátokon keresztül.
§ Meghatározó tényező a rotorfej kialakítása. Alacsony, vagy negatív gravitációs értékeknél a lefelé csapkodó lapátok eltalálhatják a farokrészt, vagy más részét a helikopternek.
§ A helikopterek különösen érzékenyek a forgószél jellegű hatásokra. A rotor által lefelé fújt levegő szélörvényt kavar a rotor körül. Ha ezt tovább fokozza a terep, szél, eső, vagy tengeri hullámok tajtéka, akkor elég felhajtóerőt veszíthet ahhoz, hogy lezuhanjon.
A 20. század vége felé a tervezők hozzáláttak a helikopter hangjának csökkentéséhez. Számos civil egyesület panaszkodott a zajos rendőrségi helikopterekre, ami több leszállóhely bezárásához és a helikopterek nemzeti parkokból való kitiltásához vezetett.
A helikopterek rázkódnak. Egy rosszul beállított helikopter akár szét is rázhatja magát. Ennek csökkentésére az összes helikopter rotorját magasság és dőlés szerint állítják be. Némelyeknek mechanikai figyelőrendszere van, ami érzékeli a rezgéseket és ellenrezgéseket indít. Általában szilárd viszonyításként egy súlyt használnak, majd a lapátok támadási szögét változtatva kisimítják a rezgéseket. A beállítások elvégzése nehéz, mivel ehhez pontosan mérni kell a vibrációt. A legelterjedtebb módszer villogó fénnyel megfigyelni a rotorlapátok alján lévő festéseket, vagy színes lámpákat. A hagyományos módszer során fehér krétával megjelölik a lapátok végeit, majd megfigyelik, hogy milyen nyomot hagy a vásznon.
A heli deck egy sík, a hajókon gyakori kiálló elemektől mentes, helikopterek számára fenntartott leszállóhely, általában a hajók hátsó részén (tatján). A hajóra való leszállást némelyik helikopternél egy leeresztő rendszer segíti, mely egy kábelből áll, ami összeköti a helikoptert egy szondával a fedélzeten. A kábel megfeszítése segíti a pilótát a leszállásban, később az rögzíti a helikoptert a fedélzethez. Az eszközt a Kanadai Haditengerészet fejlesztette ki és "Beartrap"-nek hívták („medvecsapda”). Az Egyesült Államok Haditengerészete erre alapozta a "RAST" rendszert, mely szerves része a LAMPS MK III (SH–60B) fegyverrendszernek.
A hagyományos helikopterek azonosításánál hasznos dolog tudni, hogy a földről nézve a francia, orosz és ukrán helikopterek rotorja az óramutató járásával szemben forog, míg az olasz, brit és amerikai az órajárással megegyezően.
Néhány cég az USA-ban, például a Schweizer távvezérlésű helikopterek kifejlesztésén dolgozik a jövő harcterei számára.
Folyamatban van a hibrid gépek gyártása, melyek egyesítik a helikopter és a repülő előnyeit. Ilyen például az 1950-es években épített Fairey Rotodyne és a Bell Boeing Osprey, amelyet az Amerikai Haditengerészet rendelt meg. Ez lesz az első sorozatgyártásban készült dönthető motoros légijármű.
A helikoptert nem szabad összekeverni az autogiróval, ami a helikopter egyik elődje és motor nélküli rotorral képes felemelkedni.